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Abstract. This paper introduces a car following model where the driving scheme takes into account the
deficiencies of human decision making in a general way. Additionally, it improves certain shortcomings of
most of the models currently in use: it is stochastic but has a continuous acceleration. This is achieved
at the cost of formulating the model in terms of the time derivative of the acceleration, making it non-
Newtonian. However, the recipe for construction of bounded rational driver models proposed in this paper
seems to be very general and can be applied to most, if not all of the traditional car-following models.

PACS. 45.70.Vn Granular models of complex systems; traffic flow – 89.40.+k Transportation –
02.50.Le Decision theory and game theory

1 Introduction

To understand traffic flow, it is mandatory to analyze the
interaction between the cars. The simplest case is that
of a car following a lead car. To describe this process, a
large number of models have been invented (for a review
see [1,2]). These models differ in the details of the interac-
tion between the cars, and the time update rule, ranging
from differential equations to cellular automata. Mostly,
they describe this process by an equation a = a (v, h, V )
that relates the change in the current velocity v (the ac-
celeration a) to the velocity v of the following car, the dis-
tance h (“headway”) to the car ahead, and its speed V ,
respectively.

Considerable effort has been made to investigate the
emerging macroscopic behavior from the underlying mi-
croscopic dynamics of interacting cars. Nevertheless, there
is still a lot of controversy in both the macroscopic behav-
ior when compared to reality [3], and in the microscopic
foundations of the individual car dynamics. In particular,
the observed non-damped oscillations in the relative mo-
tion of vehicles, which are illustrated in Figure 1 are often
explained by the instability in the cooperative motion of
the car ensemble only (see, e.g. [1,2]). In fact, subjected to
reasonable physical constraints the relation a = a (v, h, V )
seems to be hardly able to predict an instability in the fol-
lowing car motion provided the car ahead moves at a con-
stant velocity. However, recent models [4–6] display a cer-
tain kind of instability in the car following process itself.
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The data illustrated in Figure 1 were collected during
August 1997 on the German highway A3 between Cologne
and Frankfurt using an equipped car measuring the head-
way distance h and speed v, and computing the relative ve-
locity v−V as well as the velocity V of the car ahead. The
car has moved in normal traffic, so the lead car changes
very often, typical episodes of following the same car last
between 10 and 100 s. The upper window shows a typical
car path on the hv-plane and the lower window visual-
izes time variations in the velocity difference (curve 1)
as well as in the velocity of the following car and a car
ahead (curves 2 and 3, respectively). The grey rectangles
bound the fragments where the velocity of a car ahead
does not exhibit remarkable oscillatory variations whereas
such variations in the velocity of the given car are substan-
tial. So we may conclude that the observed car-following
dynamics is characterized by weak velocity correlations
between neighboring cars at least on time scales about the
quasi-period of the velocity oscillations of 10 seconds. As
seen in Figure 1 (lower window) the velocity variations be-
comes correlated on larger scales of several quasi-periods.
A possible explanation of these long-time correlations is
postponed to the end of the paper. The part of the hv-path
corresponding to the bounded fragments in the lower win-
dow is singled out with the thick grey curve. It indicates
that the presented path is made of quasi-ellipses whose
centers are scattered over a certain region along the head-
way axis. In reference [7] a similar path of the car-following
dynamics is called the “close following spiral.”

The observed time pattern seems to indicate that there
is an instability mechanism not related to the collective ef-
fects. In fact, if the instability of the steady state motion
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Fig. 1. Measured car-following behavior. Data are recorded by
an equipped car measuring distance h and speed v, and com-
puting v − V during a drive on a German freeway. The upper
window shows the car dynamics in the hv-plane, whereas the
lower window demonstrates the time variations of the velocity
difference (curve 1) as well as in the velocity of the following
car (curve 2) and the car ahead (curve 3). The fragment of
the hv-path singled out with the thick grey curve corresponds
to the fragments bounded by the grey rectangles in the lower
window.

was solely due to collective effect in the car interaction, as
it is in the traditional optimal velocity models, then the
velocity correlation of the neighboring cars should be es-
sential on all time scales. Otherwise, i.e., when the steady
state motion becomes unstable if even the car ahead moves
at constant speed, the collective effects have solely to syn-
chronize the oscillations rather than to cause them. So,
when the synchronization of these oscillations is destroyed
from time to time the motion of neighboring car will be
uncorrelated. The present paper is devoted to one of such
mechanisms.

Actually, there are two stimuli affecting the driver be-
havior. One of them is the necessity to move at the mean
speed of traffic flow, i.e., with the speed V of the leading
car. So, first, the driver should control the velocity dif-
ference v − V . The other is the necessity to maintain a
safe headway hopt(V ) depending on the velocity V . In
particular, the earliest “follow-the-leader” models [8,9]
take into account the former stimulus only without re-
garding the headway h at all. By contrast, the “opti-
mal velocity” model [10,11] directly relates the accelera-
tion a to the difference between the current velocity v and
a certain optimal value ϑopt(h) at the current headway,

a ∝ [v − ϑopt(h)]. Of course, more sophisticated approx-
imations, e.g., [12–17] to name but a few, allow for both
stimuli.

It is unlikely that the variables {v, h, V } specify the
acceleration a completely. Since drivers have motivations
and follow only partly physical regularities, memory ef-
fects may be essential. In a simple manner, this has been
introduced in models that relate the current accelera-
tion a(t) to the velocity v(t−τa) and the headway h(t−τa)
at a previous moment t−τa (for a review of the “following-
the-leader” models see, e.g., Refs. [18,19], for the “optimal
velocity model” see Refs. [20,21]). Here, τa is the delay
time in the driver response which is treated as a constant.
This approach is not completely satisfactorily because,
first, it is not clear why the memory effects relate only two
moments of time instead of a certain interval as a whole.
Second, the dependence of the time scale τa on the car
motion state is missing. Nevertheless, these models show
an instability in the car-following dynamics (provided τa

is big enough) and are non-Newtonian as well.
A first step toward what is presented here has

been reported already [22]. There, the optimal velocity
model [20,21] has been generalized to yield a form that
looks similar to what is presented in equation (1), how-
ever with two important differences: the approach in ref-
erence [22] is without noise and it assumes a constant
time-constant τa in front of the da/dt-term. For the model
presented here the time scale τa(v, h, a) depends substan-
tially on the car motion state and a psycho-physical mech-
anism responsible for this dependence is proposed. Al-
though looking fairly complicated, a simple explanation
grounded in bounded rationality can be given for this de-
pendence.

2 Cause of the non-Newtonian car dynamics

In the present paper, reasons of another nature than
the driver’s response delay lead beyond the framework of
Newton’s mechanics. A corresponding model for the fol-
lowing car dynamics displaying an instability around the
stationary motion is proposed. To describe the driver be-
havior, the approach suggested in reference [24] will be
used. There, drivers plan their behavior for a certain time
in advance instead of simply reacting to the surrounding
situation. A similar idea related to the optimum design of
a distance controlling driver assistance system is discussed
in reference [25]. In mathematical terms the driver’s plan-
ning of her further motion is reduced to finding extremals
of a certain priority functional that ranks outcomes of dif-
ferent driving strategies. Here, the assumption that the
driver is rational plays the crucial role. It means that
the driver continuously correct the car motion to follow
the optimal strategy. In this case [26], the collection of
variables {v, h, V } does specify the car acceleration a com-
pletely. However, the assumed continuous control is impos-
sible to achieve for humans. Therefore, it is assumed below
that a real driver, first, cannot compute the optimal path
of motion exactly and, second, that she cannot correct the
car motion continuously.
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This is just the approach that is known as bounded
rationality [27]. Even if a driver succeeds in finding the
optimal solution, she is only capable of setting the accel-
eration to a fixed value. After that, she waits until the
deviation from her priority functional has become too big
to ignore, leading to a re-computation of another more
or less optimal path. Or, to put it differently, drivers are
simply not capable of resolving small differences between
a given value of acceleration, speed, or headway and their
“optimal” desired values.

The re-computations are assumed to happen stochas-
tically, with a probability that increases with the devia-
tion from the desired state. So, the model described below
becomes a stochastic one. The action of noise can be mod-
elled either explicitly by introducing certain thresholds (as
is done in the psycho-physical models [13]) or by making
the noise amplitude dependent on the distance between
the current and optimal state. This defines a dynamic trap
model [23], an approach that will be followed below.

To make the model more realistic, it is demanded that
the trajectories of acceleration, speed, and headway are
continuous functions of time. This can be achieved by for-
mulating the model in terms of the time-derivative of ac-
celeration called jerk and adding a white-noise term there.
In what follows, that the acceleration is a colorized noise
process without jumps, and so are the other integrals of
motion (speed and headway, respectively).

3 Model description

Assume that at a certain instant of time t the driver has
decided to correct the car motion and chosen the acceler-
ation a(t) (Fig. 2). As discussed above, the optimal path
{hopt(t, t)} of the further motion (t > t) is too complex for
her to compute and to follow it. So, she regards the path
{ha(t, t) : a(t, t) = a(t)} characterized by the constant ac-
celeration as the optimal one.

A certain time interval τa later, the driver has to cor-
rect the car motion again. This can be done by shifting
the current acceleration a(t + τa) towards the desired op-
timal value aopt(t + τa) = −∂2

t hopt(t, t + τa)|t=t+τa known
to her approximately:

a(t + τa) − a(t) = C (aopt(t + τa) − a(t)) + arnd(t + τa) ,

where C � 1 is a constant about unity and the ran-
dom term arnd(t + τa) allows for the uncertainty in the
driver evaluation of the optimal acceleration at the cur-
rent time. Its mean amplitude ac characterizes physio-
logical properties of drivers and can be considered con-
stant. Thereby, 〈arnd(t) · arnd(t′)〉 = a2

cδt,t′ , where δt,t′ is
Kronecker’s delta.

This discrete representation of the car motion correc-
tion is converted to a continuous description based on
stochastic differential equations. Namely, the above dis-
crete governing equation is reduced to

da

dt
= − 1

τa
(a − aopt(h, v, V )) + ηξ(t) . (1)

Fig. 2. The driver strategy of governing the car motion.

Here, aopt(h, v, V ) is the optimal acceleration specified by
the current values of headway, car velocity, and leading
car velocity. The term ξ(t) is white noise of unit amplitude
which models the uncertainty in the driver evaluation of
the optimal motion.

The acceleration increment δa caused by the random
force ηξ(t) acting during the time τa is actually the ran-
dom component arnd(t) entering the discrete governing
equation. Thus, it follows from the estimate 〈(δa)2〉 ∼
η2τa that

η =
ac√
τa

· (2)

The time scale τa of the driver control over the car mo-
tion depends on the state (h, v, V, a). Thus, the stochastic
differential equation (1) contains multiplicative noise. So
its type with respect to the corresponding Fokker-Planck
equation has to be specified. The adopted driving strategy
(Fig. 2) implies that all the characteristics of correcting
the car motion are determined by its state at the “termi-
nal” point t+τa rather than at the “initial” point t. There-
fore, it is reasonable for equation (1) to be of Klimontovich
type or, according to the classification in [28], to describe
a “postpoint” random process.

To complete the model, aopt(h, v, V ) and τa(h, v, V, a)
have to be specified. The simple ansatz

aopt(h, v, V ) = −1
τ

[
(v − V ) − 1

τ
gh (h − hV )

]
(3)

is used. It is well justified, at least, near the stationary
state of the car motion, v = V and h = hV , for the car-
following regime in congested traffic which, however, is the
main subject of the current study. Naturally, formula (3)
should be replaced by a more sophisticated expression in
order to describe a more general case. Since the present
paper analyzes mainly the case of the lead car velocity
being constant the value hV can be regarded as the op-
timal headway hopt(V ) mentioned in the Introduction. It
should be noted that similar ideas about aopt(h, v, V ) and
a dependence of τa on the motion state had been discussed
already in reference [12]. (See also [19] for a discussion.)

Here, τ is the characteristic time of the velocity varia-
tions and the constant gh � 1. The limit gh � 1 deserves
special attention because it is just the condition that a
driver, at first, prefers to eliminate the velocity difference
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v − V between her car and the car ahead and only then
optimizes the headway. In this case the optimal dynamics
of car motion, i.e., the car dynamics governed by the rela-
tion a = aopt(h, v, V ) is a pure fading relaxation towards
the stationary state. Conversely, the model under consid-
eration predicts complex oscillations in the car motion.
Note, that the adopted assumption about the value of the
coefficient gh can be justified by applying to the general
principles of the car motion [26].

If the car motion state is far from equilibrium the ne-
cessity for correcting the velocity and headway distance is
obvious. In this case it is natural to suppose that the char-
acteristic time interval τa between sequential attempts to
correct the car motion should be comparable to τ which
characterizes the velocity variations, i.e., τa ∼ τ/gv. Here,
gv � 1 is an additional model parameter. When the car
motion comes close to the equilibrium and the inequality
|aopt(h, v, V )| � ac is fulfilled the uncertainty arnd(t + τa)
in evaluating the optimal acceleration becomes significant.
Under such conditions there is no reason for the driver to
affect the car motion and she may not correct it at all. It
means that the car motion control is depressed and, cor-
respondingly, the correction time interval τa grows dra-
matically inside a domain Qu of the phase plane {h, v, V }
where the inequality |aopt(h, v, V )| � ac holds.

To compute the function τa(h, v, V, a), the boundary
of the domain Qu has to be analyzed. Note, that the ac-
celeration itself enters the driver’s perception of motion
quality: without any reason, a driver prefers not to ac-
celerate at all. When the car motion control is active
the estimate ȧ ∼ a/τa by virtue of equation (1) can be
adopted. So, the boundary of the domain Qu is specified
by a2

opt(h, v, V ) + µ2a2 ∼ a2
c , where µ ∼ 1 is a certain co-

efficient about unity. Assuming the variables h, v, a to be
independent of one another inside Qu and averaging the
latter expression over Qu its boundary Φ(h, v, V, a) ∼ 1
can be derived:

Φ(h, v, V, a) =
(v − V )2

a2
cτ

2
+ g2

h

(h − hV )2

a2
cτ

4
+ µ2 a2

a2
c

· (4)

If Φ(h, v, V, a) � 1 the driver activity in correcting the car
motion is depressed completely. Otherwise, Φ(h, v, a) � 1,
the driver controls the car motion actively. This is de-
scribed by the dependence of the correction time inter-
val τa on the car motion state,

1
τa

= gvΩ [Φ(h, v, V, a)]
1
τ
· (5)

The form of the function Ω (x) is illustrated in Figure 3.
Equation (1) together with expressions (2–5) form the pro-
posed car following model with bounded rational drivers.
It should be notated that the given model or, more rigor-
ously, the proposed mechanism of the car motion correc-
tion is of a fairly general construction. So this approach
after a sufficiently simple modification can be applied to
many Newtonian models of car ensemble dynamics.

When gh > gvΩ(0) the stationary motion with v = V
and h = hV is unstable, leading to non-damped but

Fig. 3. The correction frequency 1/τa of car motion control as
function of the car motion quality Φ(h, v, V, a).

Fig. 4. Simulated car-following behavior. Integration of the
stochastic differential equation has been performed with the
algorithms described in [29]. The parameters used are gv = 5,
gh = 0.2, µ = 1, and ∆ = 0.2.

bounded oscillations in the headway and velocity of the
following car. Otherwise, i.e., for gh < gvΩ(0) or, what
is the same, for τa(0) < τ/gh the steady state motion of
the following car is stable. We note that it is completely
stable in the traditional optimal velocity model provided
the lead car moves with fixed speed. The optimal veloc-
ity model predicts an instability of homogeneous traffic
which is caused solely by collective effects in a car ensem-
ble when the time scale τ exceeds some critical value. It
can be expected that the bounded rational driver model
displays a similar cooperative instability, this will be the
subject of further investigations.

The particular form of the function Ω (x) is of minor
importance, it is only necessary that its value inside Qu

to be small in comparison with the ratio gh/gv. When
analyzing the model numerically the following ansatz

Ω(x) = exp[(x − 1)/∆]/(exp[(x − 1)/∆] + 1)

is used, with the parameter ∆ ∼ 0.2. Below, numerical re-
sults will be presented that demonstrate the characteristic
properties of the developed model.

Figure 4 displays an example of this dynamic in the
hv-phase plane for the dimensionless headway x = (h −
hV )/(acτ

2) and the relative car velocity u = (v−V )/(acτ).
As seen in Figure 4, the behavior of this model is qualita-
tively similar to the empirical data in Figure 1. The latter
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means that both figures show the car dynamic paths in the
hv-plane made of oscillations along quasi-ellipses scattered
in some regions along the h-axis. At the current stage a
more detailed comparison is impossible because the data
illustrated in Figure 1 were obtained for the car ensemble
whereas Figure 4 visualizes the simulated car dynamics
provided the car ahead moves with constant speed.

Preliminary results have shown that, first, the quasi-
period of these oscillations in the car velocity is equal to τ
times a numerical factor (about ten) depending weakly on
the model parameters. For τ ∼ 1 s this period is similar to
the observed quasi-period. Second, the amplitude of veloc-
ity oscillations does not change substantially as the model
parameters vary and is about acτ . By visually comparing
Figures 1, 4 the estimate ac ∼ 0.3 m/s2 is obtained. It
should be noted that the amplitude of the acceleration os-
cillations exceeds ac by a numerical factor of about three.
Third, the amplitude of the headway super-oscillations,
in contrast, depends essentially on the parameter gv, en-
abling one to fix this parameter based on experimental
data. The existence of two types of oscillations can explain
different time scales in the observed velocity oscillations
(Fig. 1). If the cooperative phenomena affect mainly the
headway dynamics then also the time variations should
exhibit strong correlations on scales exceeding the period
of the leading quasi-harmonic variations.

4 Summary

A model regarding the bounded rational behavior of car
drivers has been supposed in this contribution. It takes
into account that drivers, although having detailed ideas
about their preferred driving strategy, are not able to con-
trol this driving strategy sufficiently precisely. Namely,
drivers introduce three main sources of error into the op-
timal driving strategy: instead of keeping track of the
changes in acceleration they simply choose a constant one,
that additionally is not the optimal one but blurred by
noise. This noise models the inability of drivers to evaluate
exactly the very complex integrations leading to an opti-
mal driving strategy. Therefore, the need to correct the
motion from time to time arises, with the correction time
intervals distributed randomly but inversely proportional
to the deviation from the desired optimal acceleration.

It is shown, that these ideas can be captured in a
simple model for the car-following dynamics, however at
the cost of introducing a non-Newtonian term, the jerk
(change in acceleration). The benefit of doing so is that
the resulting model has smooth trajectories in headway,
velocity and acceleration but still being a stochastic one.
This discerns the approach proposed here from almost all
models of car-following introduced so far.

Although the trajectories generated by this model have
some similarities with real car-following data, the ap-
proach proposed here still needs thorough testing with
empirical data. This will be done in the near future and
will be reported soon.

It should be noted, in addition, that the recipe for
construction of bounded rational driver models proposed

in this paper seems to be very general and can be applied
to most, if not all of the traditional car-following models.
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